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Abstract

The closed-form solutions to the compression stiffness of the laminated elastomeric bearings of infinite-strip shape
with flexible reinforcements are derived. The effect of bulk compressibility in the elastic layer and the effect of boundary
condition at the ends of the bearing are considered. Three types of the elastic layers bonded to flexible reinforcements
are studied. The first type simulates the interior elastic layers of the bearings with shear-free ends. The second type
simulates the exterior elastic layers of the free-end bearings. The third type simulates the elastic layers in the bearings
which ends are bonded to rigid plates. The theoretical solutions to the compression stiffness of the bearings are ex-
tremely close to the results obtained by the finite element method, which proves that the displacement assumptions
utilized in the theoretical derivation are reasonable.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A laminated elastomeric bearing consists of elastomeric layers bonded to interleaving reinforcing sheets.
High stiffness of reinforcements restrains the lateral expansion of elastomeric layers and results in higher
compression stiffness than an unbonded elastomeric layer in the vertical direction normal to the layer. Thus,
a laminated elastomeric bearing can provide high vertical rigidity to sustain gravity loading, while still
providing the same horizontal flexibility of an unbonded elastomer.

The laminated rubber bearings used in seismic isolation are heavy and expensive. The primary weight in
an isolation bearing is due to the reinforcing steel plates. The high cost of producing an isolator results from
the labor involved in preparing the steel plates and assembly of the rubber sheets and steel plates for
vulcanization bonding in a mold. The research work performed by Kelly (1999) suggests that eliminating
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the steel reinforcing plates and replacing them with fiber reinforcement can significantly reduce both the
weight and the cost of isolators. The reduction in weight is possible because fiber materials are now
available with an elastic stiffness that is of the same as steel. Manufacturing cost may be reduced because
the use of fiber allows a simpler, less labor-intensive process.

To analyze the stiffness of the steel-reinforced bearing, the steel reinforcement is treated as completely
rigid and the bonded elastic layer deforms according to two kinematics assumptions: (i) planes parallel to
the rigid bonding plates before deformation remain planar after loading; (ii) lines normal to the rigid
bonding plates before deformation become parabolic after loading. Gent and Lindley (1959) derived the
compression stiffness of an incompressible elastic layer bonded to rigid plates for infinite-strip shape and
circular shape. Subsequently, Gent and Meinecke (1970) extended this method to analyze the compression
stiffness and tilting stiffness of incompressible elastic layers for square and other shapes.

Although rubber can be treated as incompressible in some analyses, the assumption of incompressibility
tends to overestimate the stiffness of the bonded rubber layer when the layer’s shape factor (defined as the
ratio of the one bonded area to the force-free area) is high. Kelly (1997) developed a ‘pressure solution’
approach to derive the compression stiffness and the tilting stiffness considering the effect of bulk com-
pressibility. The solutions are available for the layers of infinite-strip shape (Chaihoub and Kelly, 1991),
circular shape (Chaihoub and Kelly, 1990) and square shape (Koh and Kelly, 1987).

Lindley (1979a) applied an energy method to derive the compression stiffness of the infinite-strip and
circular shapes as well as the tilting stiffness of the infinite-strip shape (Lindley, 1979b) for the material of
any Poisson’s ratio. Koh and Kelly (1989) utilized a ‘variable transform’ approach to derive the com-
pression stiffness of the square shape for compressible material. Recently, Koh and Lim (2001) extended
this approach to solve the compression stiffness of the rectangular shape. Tsai and Lee (1998, 1999)
developed a pressure approach to derive the compression stiffness and tilting stiffness of bonded elastic
layers in infinite-strip, circular and square shapes. These solutions are accurate for the material of any
Poisson’s ratio.

In contrast to the steel reinforcement that is assumed to be rigid, the fiber reinforcement is flexible in
extension. Tsai and Kelly (2001, 2002a,b) derived the compression stiffness and tilting stiffness of fiber-
reinforced isolators by assuming the elastomeric layer is incompressible and the reinforcement is flexible.
Recently, bulk compressibility is included in the stiffness analysis of fiber-reinforced isolators of infinite-
strip shape (Kelly, 2002; Kelly and Takhirov, 2002). In these researches, the flexible reinforcements in the
bearing are assumed to have the same deformation, which implies every elastic layer in the bearing has the
same compression stiffness and is referred to as ‘monotonic deformation’ here.

In the bearing with rigid reinforcements, each bonded elastic layer has the same compression stiffness
because of rigid reinforcement. However, this may not be applicable to the bearings with flexible rein-
forcement, where the compression stiffness of bonded elastic layers varies with the deformation of flexible
reinforcements. Moreover, the boundary condition at the ends of the fiber-reinforced bearings can also
affect the compression stiffness. When performing the compression analysis of the bearing subjected to
vertical loading only, two types of boundary conditions can be imposed at the ends of the bearing, which
are referred to as ‘free end’ and ‘rigid end’ here. ‘Free end’ means the end of the bearing does not have any
horizontal constraint so that it is free from any shear force. ‘Rigid end’ means the end of the bearing is
bonded to rigid plate so that it does not have any horizontal deformation.

In this paper, the effect of bulk compressibility in the elastic layer and the effect of boundary condition at
the ends of the bearing are considered in the compression analysis of fiber-reinforced bearings. A theoretical
approach similar to the analysis by Tsai and Lee (1998) is developed to derive the compression stiffness of
fiber-reinforced bearings of infinite-strip shape. The stiffness of the bearing with monotonic deformation is
derived first. Then, the free-end bearings and the rigid-end bearings are studied. In addition to the theo-
retical derivation, finite element analyses on the fiber-reinforced bearings are carried out to verify the
exactness of the theoretical solution.
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2. Governing equations

A Dbearing of infinite-strip shape shown in Fig. 1 consists of multiple elastic layers interleaving with
flexible reinforcing sheets. The elastic layer 1 is at the top of the bearing and the elastic layer » is at the
bottom. The reinforcements are counted from 0 to n. The width of the bearing is 26 and each elastic layer
has the same thickness . The length of the bearing is much larger than the other dimensions, so that the
deformation of the bearing is assumed to be in plane strain state and only a unit length of the bearing is
analyzed. Fig. 2 depicts the elastic layer i bonded between the reinforcements i — 1 and i. A local coordinate
system (x,y,z) is located at the center of the layer. The y-axis is attached to the infinite-long direction.

For isotropic elastic layers, the mean pressure p has the following relation with the displacements

px,2) = —K(ux+wz) (1)

where u and w are the displacements of the elastic layer along the x and z directions, respectively, i is the
bulk modulus, and the commas imply differentiation with respect to the indicated coordinate. The normal
stresses in the x and z directions have the forms

A
Oyy = — Ep + Zluu.,x (2)
A
Oz = — Ep + 2,UWZ (3)
in which 4 and p are Lame’s constants. The equilibrium equation in the x direction becomes
Dx K
— = zz — Wiz 4
o = e ) )
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Fig. 1. Bearing consisting of n elastic layers interleaving with reinforcements.
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Fig. 2. Coordinate system in elastic layer.
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The thickness of the reinforcements #; is much smaller than the thickness of the elastic layers, so that the
stress in the reinforcements can be regarded as being in plane stress state within x—y plane. Let N,, be the
normal force in the x direction acting on a unit length of the reinforcement, and u; be the displacement of
the reinforcement in the x direction, which have the following relation

Bl () (5)

Nl =102
f

where E; and v; are the elastic modulus and Poisson’s ratio of the reinforcement, respectively.
When the bearing is subjected to vertical compression, horizontal planes of the bearing are assumed to
remain plane, which implied that the vertical displacement of the elastic layer is a function of z only,

w(x,z) = w(z) (6)
The effective compression strain of the elastic layer ¢, is defined as
1 _ _
b = ——[w(t/2) —w(—1/2)] (7)

1
The compression stiffness of an elastic layer is determined by the effective compression modulus defined as

E. = 810{211) /_Z [i /_Z GZZ(X?Z)dZ] dx} (8)

Using Eq. (3), the effective compression modulus becomes

/3w: 9)

—b

E.=2u+

2be.k
with p being the effective pressure defined as

t/2
po) =y [ peas (10)

! /2

The boundary condition of normal stress at the edge of the elastic layer is o,.(b,z) = 0. Substitute Eq. (2)
into this boundary condition and then integrating through the thickness of the layer, which gives

(b 2 /2

42:4{/ u,(b,z)dz (11)
K At —1/2

The boundary condition of the normal force at the edge of the reinforcing sheet is N,,(5) = 0. From Eq. (5),

this boundary condition means

ur(b) =0 (12)

3. Bearings with monotonic deformation

The bearing with monotonic deformation assumes that all reinforcements have the same horizontal
displacement, which allows the horizontal displacement of the elastic layers to have the form

u(x, 2) _L‘:(x)(l —) + up(x) (13)
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in which the term of u represents the kinematics assumption of quadratic-varied displacement. Substituting
the displacement functions in Egs. (6) and (13) into Eq. (1), the effective pressure defined in Eq. (10) be-
comes

I

2
= _(gu,x+uf,x_gc) (14)

Integrated through the thickness of the elastic layer, the equilibrium equation in Eq. (4) becomes
Dy 2,

1 [ 126
0=\ 7 2, (16)

Using Eq. (15), Eq. (14) gives

l poe P
Uy =———=+4¢ 17
£, @ K K+C (17)

The internal forces acing on the reinforcement are shown in Fig. 3, which gives the following equilibrium
equation
dN,,
dx
where 7,.(x, —¢/2) and 7,.(x, £/2) are the bonding shear stresses generated by the elastic layers bonded to the

top and bottom, respectively, of the reinforcement. Under the assumption of monotonic deformation, the
shear stress in each elastic layer has the same form

e, —1/2) = Te(x,1/2) = 0 (18)

8z
Te(x,2) = —#t—zu(x) (19)
Substituting Egs. (5) and (19) into Eq. (18), the equilibrium equation in the reinforcement becomes
2
Uf oy = — foc%it (20)
3
with
12u(1 — v?
= 2L 21)
Estet
¢ |
Elastic layer i | Ty (X,-1/2) I
N ___;;;_____J
Reinforcement i - _Nﬁ%Nﬁtdﬁxxl
Elastic layer i+1i T (X,U2) :
X dx

Fig. 3. Internal forces acting on reinforcement.
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From Eq. (15), Eq. (20) becomes

2
o
Uf xx = _;Z),x (22)
%

Substitution of Eq. (17) into Eq. (22) yields

Pox (2 2\ Px
— Fx _ 2
- (o + o) - 0 (23)
Using Eqs. (13) and (14), the boundary condition in Eq. (11) becomes
plb)  2u
=TT e 24
o (24)
According to Eqgs. (17) and (24), the boundary condition in Eq. (12) means
Pxx(b) A
- = - G 2
K A+2u Yofe (25)
Based on the above two boundary conditions and the fact that p(x) is an even function, the solution of
Eq. (23) is
@: ) 2u - A oc_§ 1_coshﬁox (26)
K A+2u 0 A+2u\ By cosh b
with

Bo=\/od + ot @7

Substituting Eq. (26) into Eq. (9), the effective compression modulus of the elastic layer in the bearing
with monotonic deformation is

240, 2 ( tanh f,b )
E =20+~ + 2 (1- 28
(Eedmono = 21 A+2n A+2u (ﬁé) Bob (28)
As 4 = oo, the asymptotic value is
12u tanh o b
E. =4u+—-(1- 2
(B =40+ o (1= 2200 ) (29)

which is the compression modulus of the elastic layer of incompressible material. The last term is the same
as the solution derived by Kelly (1999). The asymptotic value of Eq. (28) for Ef = oo is

A tanhayb
A42u  ogb

E.= 2u+/1(1 (30)

which is the compression modulus of the elastic layer bonded between rigid plates (Tsai and Lee, 1998).
Substitution of Eq. (26) into Eq. (22) gives the displacement of reinforcement

B A o2\ [x 1 \ sinh fyx
== (/3_) 5 () comi ) Gl

Using Eq. (5), the normal force in the reinforcement is found as

B A 12u cosh f,x
ve=s( ) < 7 ) (s ts) (2)
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As E; = oo, the asymptotic value is

_ cosh ox
cosh oyb

Ny = 8&)»(1

which is the distribution of the normal force in the rigid reinforcement.

4. Bearings with free ends

When analyzing the free-end bearing where both ends are free from any horizontal shear force, the
elastic layers can be distinguished into two groups, exterior and interior. The exterior layers are the elastic
layers at the top and the bottom of the bearing. The interior layers are the other elastic layers. In the elastic
layer 1, one of the exterior layers, the horizontal displacement can be assumed as

ww@g)za“m@<1—%§>+4$%m(%+§>+wﬁkm(%—f> (34)

t

in which ugi) represents the displacement of the reinforcement i. Substituting the above equation and Eq. (6)
into Eq. (1), the effective pressure defined in Eq. (10) becomes

pl) 2 1 1
P - 0 1
= —<§“$> +§”§,x> +§“§x> —Sﬁl)) (35)
where ¢! is the effective compression strain of the elastic layer 1 defined in Eq. (7).
Integrated through the thickness of the elastic layer, the equilibrium equation in Eq. (4) for the elastic
layer 1 becomes
51
Dy 2 ,_
. :—gﬁw” (36)

Using Eq. (36), Eq. (35) becomes

7 =)
lp‘” p__’_g(l)

0 1
upl ) =2| ==ty (37)
0
The top of the reinforcement 0 is free from shear force, so that its equilibrium equation becomes
dN©)
T wy2) =0 (38)

where t!!) is the bonding shear force applied by the elastic layer 1 at the bottom of the reinforcement. By
using Egs. (5) and (34), the above equation becomes

1
up = o (4 +u —ul) (39)
The equilibrium equation of the reinforcing sheet 1 is
AN
o T T, —1/2) = 12 (x,1/2) = 0 (40)

By assuming the horizontal displacement of the elastic layer 2 be monotonically deformed as shown in Eq.
(13), the above equilibrium equation becomes
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1
ity = 5o (4 — 42 — i + ) (41)

Since the elastic layers 1 and 2 are adjacent, it is reasonable to assume these two elastic layers have the same
bulge deformations, i.e.

u? (x) ~ it(l)(x) (42)
Summation of Egs. (39) and (41) yields

g +up = —oqul! (43)
Substitution of Egs. (36) and (37) into Eq. (43) gives
») )
p.xxx 2 3 2 pA)c
= — = = = 44
K (‘Xo + 2 “1) » 0 (44)

Using Egs. (34) and (35), the boundary condition in Eq. (11) becomes

ﬁ(l)(b)f 2u Q)
C

= 45
K A+2u (43)

From Eq. (12),
u)(b) + uf) (b) = 0 (46)

Substitute Eq. (37) into the above equation and use Eq. (45), which leads another boundary condition of
the effective pressure

)
pxx (b) )L 2.(1)
’ =— ot 47
K )» + 2/1 “Ogc ( )
Using the above two boundary conditions and the fact that ") (x) is an even function, the solution of Eq.
(44) is
20 (x) 0 2u e A aé | cosh f,x (48)
K ClAF2n A+2p\ B cosh 3,b

with

By = /o2 +0.754 (49)

Substituting Eq. (48) into Eq. (9), the effective compression modulus of the elastic layer 1 at the top of
the free-end bearing is derived as

2u, Va7 tanh f8,b
EY =2 n ) (1— ! 50
¢ “+;L+2H+A+zu<g§> B.b (50)

As A = oo, the asymptotic value is

124 ( | _ tanh \/0.75a1b>

EV =4u+ (51)

0.750212 V0.7504,b

The elastic layer n at the bottom of the free-end bearing has the same effective compression modulus as
shown in Eq. (50). The interior layers are assumed to be monotonically deformed and have the effective
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compression modulus shown in Eq. (28). The stiffness of the bearing can be obtained by adding the stiffness
of the elastic layers in series. The effective compression modulus of the free-end bearing having » elastic
layers is

n
Eediee =5 2= (52)
Eilj (E¢)mono
The shape factor of the bonded elastic layer of infinite-strip shape is defined as
b
S=- (53)

t

Let £ and v be the elastic modulus and Poisson’s ratio of the elastic layer, respectively. The ratio of the
elastic layer stiffness to the reinforcement stiffness y is defined as

Et(1 —v})

4
Ecty (5 )

’)) =
Egs. (28) and (50) indicate that the normalized effective compression modulus E./E is a function of v, S
and y.

Fig. 4 compares the effective compression modulus among Eq. (28) for interior elastic layers, Eq. (50) for
exterior elastic layers, and Eq. (52) for the free-end bearing consisting of five elastic layers. The results of
finite element analysis for the five-layer bearing are also plotted in the figure. The stiffness of exterior layers
is higher than the stiffness of interior layers. The effective compression modulus calculated from Eq. (52) is
the closest curve to the finite element solution. Egs. (27) and (49) indicates that the stiffness difference
between the exterior layer and the interior layer becomes negligible when the stiffness ratio y is very small.
When the bearing has a large number of elastic layers, Eq. (52) indicates that (E.); .. becomes close to
(EC)mono'

Variations of the effective compression modulus with Poisson’s ratio v and stiffness ratio y are plotted in
Figs. 5 and 6, respectively, for the free-end bearings consisting of 20 elastic layers, which show that the
theoretical solutions calculated from Eq. (52) are very close to the finite element solutions. The bearing with
higher shape factor has a higher stiffness. The bearing stiffness increases with increasing Poisson’s ratio v.
The bearing with high shape factor (S = 20) and high reinforcement stiffness (y = 0.01) has a dramatic
increase in stiffness when Poisson’s ratio v is near 0.5. The bearing stiffness decreases with decreasing the

free

Poisson's ratio v

0 045  0.495 0.4995 0.49995 0.499995
3 ' ' ' ' 2.8
LTI T
;= .
) 7
u\i 2 - /4 . u\f
w 4»/— Interior layers w )
E ) Interior layers
————— Exterior layers ;
1.5 . Exterior layers
— - — 5-layer bearing 5| beari
i . Finite element rlayerbearing
1 I T I T I T I T T I T I
0 1 2 3 4 5 40 50
log[1/(1-2v)]
(@) S=20, =1 () v=0.49995, 1=1

Fig. 4. Effective compression modulus of exterior layers and interior layers.
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Fig. 5. Effective compression modulus varied with Poisson’s ratio in 20-layer bearing with free ends.
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Fig. 6. Effective compression modulus varied with stiffness ratio in 20-layer bearing with free ends.

reinforcement stiffness (increasing y). When y — oo, the free-end bearing becomes an unbonded elastic
block and its effective compression modulus becomes E/(1 — v?) which is independent of the shape factor S.

5. Bearings with rigid ends

For the bearing with rigid ends, the reinforcements at the ends of the bearings are subjected to rigid
constraint, i.e. u}o) (x) = u}")(x) = 0. When deriving the compression stiffness of the elastic layer 7 in the
rigid-end bearing, the horizontal displacements of the reinforcements i — 1, i and i + 1 are assumed to be
proportional to a displacement function #”)(x), that is

uf V0 = fiai (), w0 = fia @), () = S () (55)
where f; is a dimensionless quadratic function varied through the height of the bearing. For the bearing
consisting of n elastic layers, f; has the following form

fi=at(1-1) (56)
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The horizontal displacement of the elastic layer i in the bearing can be assumed as

u (x,z) = u<l‘>(x)<1 —i—f) +u<f"”(x)<%+§) +u§">(x)(%—f> (57)

t

The vertical displacement of the elastic layer has the same form as Eq. (6). Substituting Egs. (6) and (57)
into Eq. (1), the effective pressure of the elastic layer i defined in Eq. (10) becomes

) 2 1 . .
P |2z s ) o)
K |:3u,x + Z(ﬁfl +.fl)u,x &g :| (58)

where &%) is the effective compression strain of the elastic layer i defined in Eq. (7).
Integrated through the thickness of the elastic layer, the equilibrium equation in Eq. (4) becomes

7

Dy 2 5
Using Eq. (59), Eq. (58) becomes

. 2 1p0 po
o — —t P L0 60
" fi+fia (ocﬁ PR (60)
The equilibrium equation of the reinforcement i is

dnNG ) )

T —1/2) = (e, 1/2) = 0 (61)
where 7! is the shear stress in the elastic layer i with the form, from Eq. (57),

(x,z) = £ (1000 (= 87) +uf U w) —ul () (62)

Substitute Egs. (5) and (62) into Eq. (61) and use the assumptions in Eq. (55) and #*"(x) ~ #" (x), which
gives
2

7l = 2 (82 4 (—fiuy + 2, — fio1)a) (63)
XX 12]1
Differentiate Eqgs. (59) and (63) with respect to x and then combine the results and Eq. (60), which yields
5(0) B0 5(0) .
B (o34 o+ o2) 4 ol = o (64
with
2(_ ¢ 2f — £, 2 2
O(%l.:al( fl+|f’2'fz fl 1)2302{1. (65)
fi n’f;
o (fi + fi-1)
oG = IT (66)

Using Egs. (57) and (58), the boundary condition in Eq. (11) becomes

() )
P (b) _ 2p R0 (67)
K A+2u ¢
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Substituting Egs. (55) and (60) into Eq. (12) and using Eq. (67) lead another boundary condition of the
effective pressure

70
pxx(b) j- 2 ()
o\P) i 68
K )v 4 2:“ O‘080 ( )
Using the above two boundary conditions and the fact that p'” (x) is an even function, the solution of Eq.
(64) is
—(i 2 2 2 2
P9 (x) _od A ,[3231. - ocg cosh f,x i [3221. - ocg cosh f;x (69)
K 42w |\ i — By ) cosh b B, — B3, ] cosh b
with
2 1, 2 2 \/ 2 2 232 22
Br = 7 |% + oy 4 o — /(o + o3, + 03;) " — Ao, (70)
2 L, 2 2 \/ 2 2 232 22
s = 7% + oy 4 o + [ (o + o3, + 03;) " — Ao, (71)

Substituting Eq. (69) into Eq. (9), the effective compression modulus of the elastic layer i is derived as

B3 — o3\ tanh f,b B2 — a2\ tanh Byb
(ﬁi - ﬂ%) b (/352 — /3%) Biib ] } (72)

As A = oo, the asymptotic value is

A
A+ 2u

EY :2;1—&—)»{1 -

- tanh \/(a3, + 03,)b
(03, + 03;) V(03 + 03,)b

Adding the stiffness of each elastic layer in series can create the effective compression modulus of the rigid-
end bearing consisting of » elastic layers as

4u

EW — 9 "
¢ e (03, + 03,

oc%l.b2 +

(73)

n

i 7

c

(Ee)rigia = (74)

It should be noted that the formula of £ in Eq. (72) is not suitable for £{"), because Eq. (61) requires that
the elastic layer i + 1 have to exist below the reinforcement i. However, due to the symmetry of the loading,
the stiffness of the bottom elastic layer is the same as that of the top elastic layer, i.e. E® = E(V.

Variations of the effective compression modulus with Poisson’s ratio v and stiffness ratio y are plotted in
Figs. 7 and 8, respectively, for the rigid-end bearings consisting of 20 elastic layers, which show that the
theoretical solutions calculated from Eq. (74) are very close to the finite element solutions. When the
reinforcement stiffness is high (y = 0.01), the stiffness of the rigid-end bearing is very close to the stiffness of
the free-end bearing. When the reinforcement stiffness is low (y = 1), the stiffness of the rigid-end bearing is
higher than the stiffness of the free-end bearing because of the rigid constraint at the ends of the bearing.
When y — oo, the rigid-end bearing becomes an elastic block bonded by the rigid plates at the ends of the
bearing and its effective compression modulus is dependent on the shape factor S and the number of elastic
layers.
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Fig. 8. Effective compression modulus varied with stiffness ratio in 20-layer bearing with rigid ends.

6. Conclusion

The closed-form solutions of compression stiffness for the elastic layers bonded between flexible rein-
forcements in the infinite-strip bearings are derived. Three types of bonded elastic layers are studied. The
first type assumes that every elastic layer in the bearing has the same deformation, which simulates the
interior elastic layers of the bearings with shear-free ends. The second type simulates the exterior elastic
layers of the free-end bearings where one side of the top reinforcement is free from shear force when the
bearing is subjected to the compression force. Combining the stiffness of exterior layers and the stiffness of
interior layers in series can generate the compression stiffness of the free-end bearings. When the numbers of
elastic layers in the bearing is large, the stiffness contribution of the exterior layers to the bearing becomes
less significant, and the effective compression modulus of the bearing becomes close to that of the interior
layer. The third type simulates the elastic layers in the bearings which ends are bonded to rigid plates. The
effective compression modulus of the rigid-end bearing is higher than that of the free-end bearing. When the
stiffness of the reinforcement is high, the effective compression modulus of the rigid-end bearing is close to
that of the free-end bearing. The compression stiffness of the bearings calculated from the theoretical
solution is extremely close to the result obtained from the finite element method, which proves that the
displacement assumptions utilized in the theoretical derivation are reasonable. Because the compressibility
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effect of the elastic layer is considered in theoretical derivation, the closed-form solutions are accurate for
the elastic layers of any Poisson’s ratio.
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