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Abstract

The closed-form solutions to the compression stiffness of the laminated elastomeric bearings of infinite-strip shape

with flexible reinforcements are derived. The effect of bulk compressibility in the elastic layer and the effect of boundary

condition at the ends of the bearing are considered. Three types of the elastic layers bonded to flexible reinforcements

are studied. The first type simulates the interior elastic layers of the bearings with shear-free ends. The second type

simulates the exterior elastic layers of the free-end bearings. The third type simulates the elastic layers in the bearings

which ends are bonded to rigid plates. The theoretical solutions to the compression stiffness of the bearings are ex-

tremely close to the results obtained by the finite element method, which proves that the displacement assumptions

utilized in the theoretical derivation are reasonable.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A laminated elastomeric bearing consists of elastomeric layers bonded to interleaving reinforcing sheets.

High stiffness of reinforcements restrains the lateral expansion of elastomeric layers and results in higher

compression stiffness than an unbonded elastomeric layer in the vertical direction normal to the layer. Thus,

a laminated elastomeric bearing can provide high vertical rigidity to sustain gravity loading, while still

providing the same horizontal flexibility of an unbonded elastomer.

The laminated rubber bearings used in seismic isolation are heavy and expensive. The primary weight in
an isolation bearing is due to the reinforcing steel plates. The high cost of producing an isolator results from

the labor involved in preparing the steel plates and assembly of the rubber sheets and steel plates for

vulcanization bonding in a mold. The research work performed by Kelly (1999) suggests that eliminating
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the steel reinforcing plates and replacing them with fiber reinforcement can significantly reduce both the

weight and the cost of isolators. The reduction in weight is possible because fiber materials are now

available with an elastic stiffness that is of the same as steel. Manufacturing cost may be reduced because

the use of fiber allows a simpler, less labor-intensive process.
To analyze the stiffness of the steel-reinforced bearing, the steel reinforcement is treated as completely

rigid and the bonded elastic layer deforms according to two kinematics assumptions: (i) planes parallel to

the rigid bonding plates before deformation remain planar after loading; (ii) lines normal to the rigid

bonding plates before deformation become parabolic after loading. Gent and Lindley (1959) derived the

compression stiffness of an incompressible elastic layer bonded to rigid plates for infinite-strip shape and

circular shape. Subsequently, Gent and Meinecke (1970) extended this method to analyze the compression

stiffness and tilting stiffness of incompressible elastic layers for square and other shapes.

Although rubber can be treated as incompressible in some analyses, the assumption of incompressibility
tends to overestimate the stiffness of the bonded rubber layer when the layer’s shape factor (defined as the

ratio of the one bonded area to the force-free area) is high. Kelly (1997) developed a ‘pressure solution’

approach to derive the compression stiffness and the tilting stiffness considering the effect of bulk com-

pressibility. The solutions are available for the layers of infinite-strip shape (Chaihoub and Kelly, 1991),

circular shape (Chaihoub and Kelly, 1990) and square shape (Koh and Kelly, 1987).

Lindley (1979a) applied an energy method to derive the compression stiffness of the infinite-strip and

circular shapes as well as the tilting stiffness of the infinite-strip shape (Lindley, 1979b) for the material of

any Poisson’s ratio. Koh and Kelly (1989) utilized a ‘variable transform’ approach to derive the com-
pression stiffness of the square shape for compressible material. Recently, Koh and Lim (2001) extended

this approach to solve the compression stiffness of the rectangular shape. Tsai and Lee (1998, 1999)

developed a pressure approach to derive the compression stiffness and tilting stiffness of bonded elastic

layers in infinite-strip, circular and square shapes. These solutions are accurate for the material of any

Poisson’s ratio.

In contrast to the steel reinforcement that is assumed to be rigid, the fiber reinforcement is flexible in

extension. Tsai and Kelly (2001, 2002a,b) derived the compression stiffness and tilting stiffness of fiber-

reinforced isolators by assuming the elastomeric layer is incompressible and the reinforcement is flexible.
Recently, bulk compressibility is included in the stiffness analysis of fiber-reinforced isolators of infinite-

strip shape (Kelly, 2002; Kelly and Takhirov, 2002). In these researches, the flexible reinforcements in the

bearing are assumed to have the same deformation, which implies every elastic layer in the bearing has the

same compression stiffness and is referred to as ‘monotonic deformation’ here.

In the bearing with rigid reinforcements, each bonded elastic layer has the same compression stiffness

because of rigid reinforcement. However, this may not be applicable to the bearings with flexible rein-

forcement, where the compression stiffness of bonded elastic layers varies with the deformation of flexible

reinforcements. Moreover, the boundary condition at the ends of the fiber-reinforced bearings can also
affect the compression stiffness. When performing the compression analysis of the bearing subjected to

vertical loading only, two types of boundary conditions can be imposed at the ends of the bearing, which

are referred to as ‘free end’ and ‘rigid end’ here. ‘Free end’ means the end of the bearing does not have any

horizontal constraint so that it is free from any shear force. ‘Rigid end’ means the end of the bearing is

bonded to rigid plate so that it does not have any horizontal deformation.

In this paper, the effect of bulk compressibility in the elastic layer and the effect of boundary condition at

the ends of the bearing are considered in the compression analysis of fiber-reinforced bearings. A theoretical

approach similar to the analysis by Tsai and Lee (1998) is developed to derive the compression stiffness of
fiber-reinforced bearings of infinite-strip shape. The stiffness of the bearing with monotonic deformation is

derived first. Then, the free-end bearings and the rigid-end bearings are studied. In addition to the theo-

retical derivation, finite element analyses on the fiber-reinforced bearings are carried out to verify the

exactness of the theoretical solution.
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2. Governing equations

A bearing of infinite-strip shape shown in Fig. 1 consists of multiple elastic layers interleaving with

flexible reinforcing sheets. The elastic layer 1 is at the top of the bearing and the elastic layer n is at the
bottom. The reinforcements are counted from 0 to n. The width of the bearing is 2b and each elastic layer

has the same thickness t. The length of the bearing is much larger than the other dimensions, so that the

deformation of the bearing is assumed to be in plane strain state and only a unit length of the bearing is

analyzed. Fig. 2 depicts the elastic layer i bonded between the reinforcements i� 1 and i. A local coordinate

system ðx; y; zÞ is located at the center of the layer. The y-axis is attached to the infinite-long direction.

For isotropic elastic layers, the mean pressure p has the following relation with the displacements
pðx; zÞ ¼ �jðu;x þ w;zÞ ð1Þ

where u and w are the displacements of the elastic layer along the x and z directions, respectively, j is the

bulk modulus, and the commas imply differentiation with respect to the indicated coordinate. The normal

stresses in the x and z directions have the forms
rxx ¼ � k
j
p þ 2lu;x ð2Þ

rzz ¼ � k
j
p þ 2lw;z ð3Þ
in which k and l are Lame’s constants. The equilibrium equation in the x direction becomes
p;x
j

¼ l
k þ 2l

ðu;zz � w;xzÞ ð4Þ
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Fig. 1. Bearing consisting of n elastic layers interleaving with reinforcements.
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Fig. 2. Coordinate system in elastic layer.
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The thickness of the reinforcements tf is much smaller than the thickness of the elastic layers, so that the

stress in the reinforcements can be regarded as being in plane stress state within x–y plane. Let Nxx be the

normal force in the x direction acting on a unit length of the reinforcement, and uf be the displacement of

the reinforcement in the x direction, which have the following relation
NxxðxÞ ¼
Ef tf
1� m2f

uf ;xðxÞ ð5Þ
where Ef and mf are the elastic modulus and Poisson’s ratio of the reinforcement, respectively.

When the bearing is subjected to vertical compression, horizontal planes of the bearing are assumed to

remain plane, which implied that the vertical displacement of the elastic layer is a function of z only,
wðx; zÞ ¼ �wðzÞ ð6Þ

The effective compression strain of the elastic layer ec is defined as
ec ¼ � 1

t
½�wðt=2Þ � �wð�t=2Þ� ð7Þ
The compression stiffness of an elastic layer is determined by the effective compression modulus defined as
Ec ¼ � 1

ec

1

2b

Z b

�b

1

t

Z t=2

�t=2
rzzðx; zÞdz

" #
dx

( )
ð8Þ
Using Eq. (3), the effective compression modulus becomes
Ec ¼ 2l þ k
2becj

Z b

�b
�pdx ð9Þ
with �p being the effective pressure defined as
�pðxÞ ¼ 1

t

Z t=2

�t=2
pðx; zÞdz ð10Þ
The boundary condition of normal stress at the edge of the elastic layer is rxxðb; zÞ ¼ 0. Substitute Eq. (2)

into this boundary condition and then integrating through the thickness of the layer, which gives
�pðbÞ
j

¼ 2l
kt

Z t=2

�t=2
u;xðb; zÞdz ð11Þ
The boundary condition of the normal force at the edge of the reinforcing sheet is NxxðbÞ ¼ 0. From Eq. (5),

this boundary condition means
uf;xðbÞ ¼ 0 ð12Þ
3. Bearings with monotonic deformation

The bearing with monotonic deformation assumes that all reinforcements have the same horizontal

displacement, which allows the horizontal displacement of the elastic layers to have the form
uðx; zÞ ¼ �uðxÞ 1

�
� 4z2

t2

�
þ ufðxÞ ð13Þ
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in which the term of �u represents the kinematics assumption of quadratic-varied displacement. Substituting

the displacement functions in Eqs. (6) and (13) into Eq. (1), the effective pressure defined in Eq. (10) be-

comes
�p
j
¼ � 2

3
�u;x

�
þ uf ;x � ec

�
ð14Þ
Integrated through the thickness of the elastic layer, the equilibrium equation in Eq. (4) becomes
�p;x
j

¼ � 2

3
a2
0�u ð15Þ
with
a0 ¼
1

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12l

k þ 2l

s
ð16Þ
Using Eq. (15), Eq. (14) gives
uf;x ¼
1

a2
0

�p;xx
j

� �p
j
þ ec ð17Þ
The internal forces acing on the reinforcement are shown in Fig. 3, which gives the following equilibrium

equation
dNxx

dx
þ sxzðx;�t=2Þ � sxzðx; t=2Þ ¼ 0 ð18Þ
where sxzðx;�t=2Þ and sxzðx; t=2Þ are the bonding shear stresses generated by the elastic layers bonded to the

top and bottom, respectively, of the reinforcement. Under the assumption of monotonic deformation, the

shear stress in each elastic layer has the same form
sxzðx; zÞ ¼ �l
8z
t2
�uðxÞ ð19Þ
Substituting Eqs. (5) and (19) into Eq. (18), the equilibrium equation in the reinforcement becomes
uf;xx ¼ � 2

3
a2
1�u ð20Þ
with
a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12lð1� m2f Þ

Ef tf t

s
ð21Þ
c

Nxx+dNxx
Nxx

(x,-t/2)

(x,t/2)

x dx

Reinforcement i

Elastic layer i

Elastic layer i+1

L

τxz

τxz

Fig. 3. Internal forces acting on reinforcement.
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From Eq. (15), Eq. (20) becomes
uf;xx ¼
a2
1

a2
0

�p;x ð22Þ
Substitution of Eq. (17) into Eq. (22) yields
�p;xxx
j

� ða2
0 þ a2

1Þ
�p;x
j

¼ 0 ð23Þ
Using Eqs. (13) and (14), the boundary condition in Eq. (11) becomes
�pðbÞ
j

¼ 2l
k þ 2l

ec ð24Þ
According to Eqs. (17) and (24), the boundary condition in Eq. (12) means
�p;xxðbÞ
j

¼ � k
k þ 2l

a2
0ec ð25Þ
Based on the above two boundary conditions and the fact that �pðxÞ is an even function, the solution of

Eq. (23) is
�pðxÞ
j

¼ ec
2l

k þ 2l

"
þ k

k þ 2l
a2
0

b2
0

 !
1

�
� cosh b0x
cosh b0b

�#
ð26Þ
with
b0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
0 þ a2

1

q
ð27Þ
Substituting Eq. (26) into Eq. (9), the effective compression modulus of the elastic layer in the bearing
with monotonic deformation is
ðEcÞmono ¼ 2l þ 2lk
k þ 2l

þ k2

k þ 2l
a2
0

b2
0

 !
1

�
� tanh b0b

b0b

�
ð28Þ
As k ¼ 1, the asymptotic value is
ðEcÞmono ¼ 4l þ 12l
a2
1t2

1

�
� tanh a1b

a1b

�
ð29Þ
which is the compression modulus of the elastic layer of incompressible material. The last term is the same

as the solution derived by Kelly (1999). The asymptotic value of Eq. (28) for Ef ¼ 1 is
Ec ¼ 2l þ k 1

�
� k

k þ 2l
tanh a0b

a0b

�
ð30Þ
which is the compression modulus of the elastic layer bonded between rigid plates (Tsai and Lee, 1998).

Substitution of Eq. (26) into Eq. (22) gives the displacement of reinforcement
uf ¼ ecb
k

k þ 2l

� �
a2
1

b2
0

 !
x
b



� 1

b0b

� �
sinh b0x
cosh b0b

�
ð31Þ
Using Eq. (5), the normal force in the reinforcement is found as
Nxx ¼ ec
k

k þ 2l

� �
12l

b2
0t

 !
1

�
� cosh b0x
cosh b0b

�
ð32Þ
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As Ef ¼ 1, the asymptotic value is
Nxx ¼ ectk 1

�
� cosh a0x
cosh a0b

�
ð33Þ
which is the distribution of the normal force in the rigid reinforcement.
4. Bearings with free ends

When analyzing the free-end bearing where both ends are free from any horizontal shear force, the

elastic layers can be distinguished into two groups, exterior and interior. The exterior layers are the elastic

layers at the top and the bottom of the bearing. The interior layers are the other elastic layers. In the elastic

layer 1, one of the exterior layers, the horizontal displacement can be assumed as
uð1Þðx; zÞ ¼ �uð1ÞðxÞ 1

�
� 4z2

t2

�
þ uð0Þf ðxÞ 1

2

�
þ z

t

�
þ uð1Þf ðxÞ 1

2

�
� z

t

�
ð34Þ
in which uðiÞf represents the displacement of the reinforcement i. Substituting the above equation and Eq. (6)
into Eq. (1), the effective pressure defined in Eq. (10) becomes
�pð1Þ

j
¼ � 2

3
�uð1Þ;x

�
þ 1

2
uð0Þf ;x þ

1

2
uð1Þf;x � eð1Þc

�
ð35Þ
where eð1Þc is the effective compression strain of the elastic layer 1 defined in Eq. (7).

Integrated through the thickness of the elastic layer, the equilibrium equation in Eq. (4) for the elastic

layer 1 becomes
�pð1Þ;x

j
¼ � 2

3
a2
0�u

ð1Þ ð36Þ
Using Eq. (36), Eq. (35) becomes
uð0Þf;x þ uð1Þf;x ¼ 2
1

a2
0

�pð1Þ;xx

j

0
@ � �pð1Þ

j
þ eð1Þc

1
A ð37Þ
The top of the reinforcement 0 is free from shear force, so that its equilibrium equation becomes
dN ð0Þ
xx

dx
� sð1Þxz ðx; t=2Þ ¼ 0 ð38Þ
where sð1Þxz is the bonding shear force applied by the elastic layer 1 at the bottom of the reinforcement. By

using Eqs. (5) and (34), the above equation becomes
uð0Þf;xx ¼
1

12
a2
1ð�4�uð1Þ þ uð0Þf � uð1Þf Þ ð39Þ
The equilibrium equation of the reinforcing sheet 1 is
dN ð1Þ
xx

dx
þ sð1Þxz ðx;�t=2Þ � sð2Þxz ðx; t=2Þ ¼ 0 ð40Þ
By assuming the horizontal displacement of the elastic layer 2 be monotonically deformed as shown in Eq.
(13), the above equilibrium equation becomes
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uð1Þf;xx ¼
1

12
a2
1ð�4�uð1Þ � 4�uð2Þ � uð0Þf þ uð1Þf Þ ð41Þ
Since the elastic layers 1 and 2 are adjacent, it is reasonable to assume these two elastic layers have the same
bulge deformations, i.e.
�uð2ÞðxÞ 	 �uð1ÞðxÞ ð42Þ

Summation of Eqs. (39) and (41) yields
uð0Þf;xx þ uð1Þf ;xx ¼ �a2
1�u

ð1Þ ð43Þ
Substitution of Eqs. (36) and (37) into Eq. (43) gives
�pð1Þ;xxx

j
� a2

0

�
þ 3

4
a2
1

�
�pð1Þ;x

j
¼ 0 ð44Þ
Using Eqs. (34) and (35), the boundary condition in Eq. (11) becomes
�pð1ÞðbÞ
j

¼ 2l
k þ 2l

eð1Þc ð45Þ
From Eq. (12),
uð0Þf;x ðbÞ þ uð1Þf ;x ðbÞ ¼ 0 ð46Þ
Substitute Eq. (37) into the above equation and use Eq. (45), which leads another boundary condition of

the effective pressure
�pð1Þ;xx ðbÞ
j

¼ � k
k þ 2l

a2
0e

ð1Þ
c ð47Þ
Using the above two boundary conditions and the fact that �pð1ÞðxÞ is an even function, the solution of Eq.

(44) is
�pð1ÞðxÞ
j

¼ eð1Þc

2l
k þ 2l

"
þ k

k þ 2l
a2
0

b2
1

 !
1

�
� cosh b1x
cosh b1b

�#
ð48Þ
with
b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
0 þ 0:75a2

1

q
ð49Þ
Substituting Eq. (48) into Eq. (9), the effective compression modulus of the elastic layer 1 at the top of

the free-end bearing is derived as
Eð1Þ
c ¼ 2l þ 2lk

k þ 2l
þ k2

k þ 2l
a2
0

b2
1

 !
1

�
� tanh b1b

b1b

�
ð50Þ
As k ¼ 1, the asymptotic value is
Eð1Þ
c ¼ 4l þ 12l

0:75a2
1t2

1

 
� tanh

ffiffiffiffiffiffiffiffiffi
0:75

p
a1bffiffiffiffiffiffiffiffiffi

0:75
p

a1b

!
ð51Þ
The elastic layer n at the bottom of the free-end bearing has the same effective compression modulus as
shown in Eq. (50). The interior layers are assumed to be monotonically deformed and have the effective
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compression modulus shown in Eq. (28). The stiffness of the bearing can be obtained by adding the stiffness

of the elastic layers in series. The effective compression modulus of the free-end bearing having n elastic

layers is
ðEcÞfree ¼
n

2

Eð1Þ
c

þ n�2
ðEcÞmono

ð52Þ
The shape factor of the bonded elastic layer of infinite-strip shape is defined as
S ¼ b
t

ð53Þ
Let E and m be the elastic modulus and Poisson’s ratio of the elastic layer, respectively. The ratio of the

elastic layer stiffness to the reinforcement stiffness c is defined as
c ¼ Etð1� m2f Þ
Ef tf

ð54Þ
Eqs. (28) and (50) indicate that the normalized effective compression modulus Ec=E is a function of m, S
and c.

Fig. 4 compares the effective compression modulus among Eq. (28) for interior elastic layers, Eq. (50) for

exterior elastic layers, and Eq. (52) for the free-end bearing consisting of five elastic layers. The results of

finite element analysis for the five-layer bearing are also plotted in the figure. The stiffness of exterior layers

is higher than the stiffness of interior layers. The effective compression modulus calculated from Eq. (52) is
the closest curve to the finite element solution. Eqs. (27) and (49) indicates that the stiffness difference

between the exterior layer and the interior layer becomes negligible when the stiffness ratio c is very small.

When the bearing has a large number of elastic layers, Eq. (52) indicates that ðEcÞfree becomes close to

ðEcÞmono.

Variations of the effective compression modulus with Poisson’s ratio m and stiffness ratio c are plotted in

Figs. 5 and 6, respectively, for the free-end bearings consisting of 20 elastic layers, which show that the

theoretical solutions calculated from Eq. (52) are very close to the finite element solutions. The bearing with

higher shape factor has a higher stiffness. The bearing stiffness increases with increasing Poisson’s ratio m.
The bearing with high shape factor ðS ¼ 20Þ and high reinforcement stiffness ðc ¼ 0:01Þ has a dramatic

increase in stiffness when Poisson’s ratio m is near 0.5. The bearing stiffness decreases with decreasing the
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Fig. 4. Effective compression modulus of exterior layers and interior layers.
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reinforcement stiffness (increasing c). When c ! 1, the free-end bearing becomes an unbonded elastic
block and its effective compression modulus becomes E=ð1� m2Þ which is independent of the shape factor S.
5. Bearings with rigid ends

For the bearing with rigid ends, the reinforcements at the ends of the bearings are subjected to rigid

constraint, i.e. uð0Þf ðxÞ ¼ uðnÞf ðxÞ ¼ 0. When deriving the compression stiffness of the elastic layer i in the

rigid-end bearing, the horizontal displacements of the reinforcements i� 1, i and iþ 1 are assumed to be

proportional to a displacement function ~uðiÞðxÞ, that is
uði�1Þ
f ðxÞ ¼ fi�1~uðiÞðxÞ; uðiÞf ðxÞ ¼ fi~uðiÞðxÞ; uðiþ1Þ

f ðxÞ ¼ fiþ1~uðiÞðxÞ ð55Þ

where fi is a dimensionless quadratic function varied through the height of the bearing. For the bearing
consisting of n elastic layers, fi has the following form
fi ¼ 4
i
n

1

�
� i
n

�
ð56Þ
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The horizontal displacement of the elastic layer i in the bearing can be assumed as
uðiÞðx; zÞ ¼ �uðiÞðxÞ 1

�
� 4z2

t2

�
þ uði�1Þ

f ðxÞ 1

2

�
þ z

t

�
þ uðiÞf ðxÞ 1

2

�
� z

t

�
ð57Þ
The vertical displacement of the elastic layer has the same form as Eq. (6). Substituting Eqs. (6) and (57)

into Eq. (1), the effective pressure of the elastic layer i defined in Eq. (10) becomes
�pðiÞ

j
¼ � 2

3
�uðiÞ;x



þ 1

2
ðfi�1 þ fiÞ~uðiÞ;x � eðiÞc

�
ð58Þ
where eðiÞc is the effective compression strain of the elastic layer i defined in Eq. (7).

Integrated through the thickness of the elastic layer, the equilibrium equation in Eq. (4) becomes
�pðiÞ;x
j

¼ � 2

3
a2
0�u

ðiÞ ð59Þ
Using Eq. (59), Eq. (58) becomes
~uðiÞ;x ¼ 2

fi þ fi�1

1

a2
0

�pðiÞ;xx
j

0
@ � �pðiÞ

j
þ eðiÞc

1
A ð60Þ
The equilibrium equation of the reinforcement i is
dN ðiÞ
xx

dx
þ sðiÞxz ðx;�t=2Þ � sðiþ1Þ

xz ðx; t=2Þ ¼ 0 ð61Þ
where sðiÞxz is the shear stress in the elastic layer i with the form, from Eq. (57),
sðiÞxz ðx; zÞ ¼
l
t

�uðiÞðxÞ
�h
� 8

z
t

�
þ uði�1Þ

f ðxÞ � uðiÞf ðxÞ
i

ð62Þ
Substitute Eqs. (5) and (62) into Eq. (61) and use the assumptions in Eq. (55) and �uðiþ1ÞðxÞ 	 �uðiÞðxÞ, which
gives
~uðiÞ;xx ¼
a2
1

12fi
½�8�uðiÞ þ ð�fiþ1 þ 2fi � fi�1Þ~uðiÞ� ð63Þ
Differentiate Eqs. (59) and (63) with respect to x and then combine the results and Eq. (60), which yields
�pðiÞ;xxxx
j

� ða2
0 þ a2

2i þ a2
3iÞ

�pðiÞ;xx
j

þ a2
0a

2
2i

�pðiÞ

j
¼ a2

0a
2
2ie

ðiÞ
c ð64Þ
with
a2
2i ¼

a2
1ð�fiþ1 þ 2fi � fi�1Þ

12fi
¼ 2a2

1

3n2fi
ð65Þ

a2
3i ¼

a2
1ðfi þ fi�1Þ

2fi
ð66Þ
Using Eqs. (57) and (58), the boundary condition in Eq. (11) becomes
�pðiÞðbÞ
j

¼ 2l
k þ 2l

eðiÞc ð67Þ
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Substituting Eqs. (55) and (60) into Eq. (12) and using Eq. (67) lead another boundary condition of the

effective pressure
�pðiÞ;xxðbÞ
j

¼ � k
k þ 2l

a2
0e

ðiÞ
c ð68Þ
Using the above two boundary conditions and the fact that �pðiÞðxÞ is an even function, the solution of Eq.
(64) is
�pðiÞðxÞ
j

¼ eðiÞc 1

(
� k

k þ 2l
b2
3i � a2

0

b2
3i � b2

2i

 !
cosh b2ix
cosh b2ib

"
þ b2

2i � a2
0

b2
2i � b2

3i

 !
cosh b3ix
cosh b3ib

#)
ð69Þ
with
b2
2i ¼

1

2
a2
0



þ a2

2i þ a2
3i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

0 þ a2
2i þ a2

3iÞ
2 � 4a2

0a
2
2i

q �
ð70Þ
b2
3i ¼

1

2
a2
0



þ a2

2i þ a2
3i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

0 þ a2
2i þ a2

3iÞ
2 � 4a2

0a
2
2i

q �
ð71Þ
Substituting Eq. (69) into Eq. (9), the effective compression modulus of the elastic layer i is derived as
EðiÞ
c ¼ 2l þ k 1

(
� k

k þ 2l
b2
3i � a2

0

b2
3i � b2

2i

 !
tanh b2ib

b2ib

"
þ b2

2i � a2
0

b2
2i � b2

3i

 !
tanh b3ib

b3ib

#)
ð72Þ
As k ¼ 1, the asymptotic value is
EðiÞ
c ¼ 4l þ 4l

ða2
2i þ a2

3iÞt2
a2
2ib

2

"
þ 3a2

3i

ða2
2i þ a2

3iÞ
1

 
� tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

2i þ a2
3iÞ

p
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2
2i þ a2

3iÞ
p

b

!#
ð73Þ
Adding the stiffness of each elastic layer in series can create the effective compression modulus of the rigid-

end bearing consisting of n elastic layers as
ðEcÞrigid ¼
nPn

i¼1
1

EðiÞ
c

ð74Þ
It should be noted that the formula of EðiÞ
c in Eq. (72) is not suitable for EðnÞ

c , because Eq. (61) requires that

the elastic layer iþ 1 have to exist below the reinforcement i. However, due to the symmetry of the loading,
the stiffness of the bottom elastic layer is the same as that of the top elastic layer, i.e. EðnÞ

c ¼ Eð1Þ
c .

Variations of the effective compression modulus with Poisson’s ratio m and stiffness ratio c are plotted in

Figs. 7 and 8, respectively, for the rigid-end bearings consisting of 20 elastic layers, which show that the

theoretical solutions calculated from Eq. (74) are very close to the finite element solutions. When the

reinforcement stiffness is high ðc ¼ 0:01Þ, the stiffness of the rigid-end bearing is very close to the stiffness of

the free-end bearing. When the reinforcement stiffness is low ðc ¼ 1Þ, the stiffness of the rigid-end bearing is

higher than the stiffness of the free-end bearing because of the rigid constraint at the ends of the bearing.

When c ! 1, the rigid-end bearing becomes an elastic block bonded by the rigid plates at the ends of the
bearing and its effective compression modulus is dependent on the shape factor S and the number of elastic

layers.
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6. Conclusion

The closed-form solutions of compression stiffness for the elastic layers bonded between flexible rein-

forcements in the infinite-strip bearings are derived. Three types of bonded elastic layers are studied. The

first type assumes that every elastic layer in the bearing has the same deformation, which simulates the

interior elastic layers of the bearings with shear-free ends. The second type simulates the exterior elastic

layers of the free-end bearings where one side of the top reinforcement is free from shear force when the

bearing is subjected to the compression force. Combining the stiffness of exterior layers and the stiffness of
interior layers in series can generate the compression stiffness of the free-end bearings. When the numbers of

elastic layers in the bearing is large, the stiffness contribution of the exterior layers to the bearing becomes

less significant, and the effective compression modulus of the bearing becomes close to that of the interior

layer. The third type simulates the elastic layers in the bearings which ends are bonded to rigid plates. The

effective compression modulus of the rigid-end bearing is higher than that of the free-end bearing. When the

stiffness of the reinforcement is high, the effective compression modulus of the rigid-end bearing is close to

that of the free-end bearing. The compression stiffness of the bearings calculated from the theoretical

solution is extremely close to the result obtained from the finite element method, which proves that the
displacement assumptions utilized in the theoretical derivation are reasonable. Because the compressibility
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effect of the elastic layer is considered in theoretical derivation, the closed-form solutions are accurate for

the elastic layers of any Poisson’s ratio.
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